翻訳と辞書 |
Analytic polyhedron : ウィキペディア英語版 | Analytic polyhedron In mathematics, especially several complex variables, an analytic polyhedron is a subset of the complex space of the form : where is a bounded connected open subset of and are holomorphic on .〔See and .〕 If above are polynomials, then the set is called a polynomial polyhedron. Every analytic polyhedron is a domain of holomorphy and it is thus pseudo-convex. The boundary of an analytic polyhedron is the union of the set of hypersurfaces : An analytic polyhedron is a ''Weil polyhedron'', or Weil domain if the intersection of hypersurfaces has dimension no greater than .〔.〕 ==See also==
*Behnke–Stein theorem *Bergman–Weil formula
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Analytic polyhedron」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|